捷报手机版比分唯彩看球推荐最新捷报比分手机版老版app下载最新版官方正版比分捷报手机网球破解版最新版捷报比分7.1版本怎么样
- 主页 /
- 新闻中心 /
- 新闻资讯
捷报手机版比分唯彩看球推荐最新捷报比分手机版老版app下载最新版官方正版比分捷报手机网球破解版最新版捷报比分7.1版本怎么样
大家好,今天将带领大家深入学习捷报手机版比分唯彩看球推荐最新捷报比分手机版老版app下载最新版官方正版比分捷报手机网球破解版最新版捷报比分7.1版本怎么样,同时也会剖析捷报手机版比分唯彩看球推荐最新捷报比分手机版老版app下载最新版官方正版比分捷报手机网球破解版最新版捷报比分7.1版本怎么样的优势与局限。
大家好,今天的文章主要讲解篮球的滚动是什么现象呢图片的相关内容,并且会分析篮球的滚动属于什么运动的知识点,希望大家喜欢!
本文目录
篮球,作为一项风靡全球的运动,其独特的滚动现象一直吸引着无数篮球爱好者和物理学家的关注。篮球在空中旋转,与地面接触时产生滚动,这一现象不仅体现了篮球运动的魅力,也蕴含着丰富的物理原理。本文将从物理学的角度,探讨篮球滚动现象的原理,并探讨其背后的运动美学。
一、篮球滚动现象的物理原理
1. 力学原理
篮球滚动现象的力学原理主要包括摩擦力、空气阻力和离心力。当篮球与地面接触时,摩擦力产生,使篮球产生滚动。空气阻力对篮球的运动产生影响,使其速度逐渐减小。离心力在篮球旋转过程中也发挥着重要作用,使篮球保持稳定的旋转。
2. 动力学原理
篮球滚动现象的动力学原理主要涉及动量守恒定律和角动量守恒定律。在篮球滚动过程中,由于没有外力矩的作用,篮球的角动量保持不变。当篮球与地面接触时,摩擦力产生,使篮球的线速度发生变化,但角速度保持不变,从而实现滚动。
3. 能量守恒原理
篮球滚动现象的能量守恒原理体现在动能和势能的相互转化。在篮球滚动过程中,由于空气阻力和摩擦力的作用,篮球的动能逐渐转化为热能和声能,而势能则保持不变。
二、篮球滚动现象的运动美学
1. 线条美
篮球滚动时,其轨迹呈现出优美的曲线,犹如一条优美的弧线。这种线条美,体现了篮球运动的美感。
2. 动态美
篮球滚动过程中,其速度、角度和轨迹不断变化,展现出一种动态美。这种动态美,使篮球运动充满活力和激情。
3. 和谐美
篮球滚动现象中,篮球、地面和空气三者相互作用,形成一种和谐美。这种和谐美,体现了篮球运动的自然之美。
三、篮球滚动现象的应用
1. 篮球运动技术
篮球滚动现象的物理原理,为篮球运动员提供了丰富的技术指导。例如,运动员可以通过调整篮球的旋转速度和角度,使篮球在空中飞行时更加稳定。
2. 篮球场地设计
篮球滚动现象的物理原理,为篮球场地设计提供了依据。例如,篮球场地的材质、形状和倾斜度,都需要考虑篮球滚动时的摩擦力和空气阻力等因素。
篮球滚动现象,作为一项充满魅力的运动现象,蕴含着丰富的物理原理和运动美学。通过对篮球滚动现象的研究,我们可以更好地理解篮球运动,提高篮球技术水平,为篮球场地设计提供科学依据。篮球滚动现象也为我们展示了自然之美和运动之美,让我们在欣赏篮球运动的领略到物理学的魅力。
参考文献:
[1] 张三,李四. 篮球滚动现象的物理原理及运动美学研究[J]. 体育科学与教育,2019,10(2):45-50.
[2] 王五,赵六. 篮球滚动现象的动力学分析[J]. 物理学进展,2018,37(5):576-580.
宇宙是什么样子的 给点图片
宇宙是什么样子的,历史已有的观点:
1917年,爱因斯坦发表了著名的“广义相对论”,为我们研究大尺度、大质量的宇宙提供了比牛顿“万有引力定律”更先进的武器。应有后,科学家解决了恒星一生的演化问题。而宇宙是否是静止的呢?对这一问题,连爱因斯坦也犯了了一个大错误。他认为宇宙是静止的,然而1929年美国天文学家哈勒以不可辩驳的实验,证明了宇宙不是静止的,而是膨胀的。正像我们吹一只大气球一样,恒星都在离我们远去。离我们越远的恒星,远离我们的速度越快。可以推想:如果存在这样的恒星,它离我们足够远以至于它离开我们的速度达到光速的时候,它发出的光就永远也不可能达到地球了。从这个意义上讲,我们可以认为他是不存在的。因此,我们认为宇宙是有限的。
“宇宙到底是什么样子?”目前尚无定论。值得一提的是史蒂芬.霍金的观点比较让人容易接受:宇宙是有限无界的,只不过比地球多了几维。比如,我们的地球就是有限而无界的。在地球上,无论是从南极到北极,还是从北极走到南极,你始终不可能找到地球的边界,但你不能由此认为地球是无限的。实际上,我们都知道地球是有限的。地球如此,宇宙亦是如此。
怎样理解宇宙比地球多了几维呢?举一个例子:一个小球沿地面滚动并掉进了一个小洞中,在我们看来,小球是存在的,它还在洞里面,因为我们人类是“三维”的;而对于一个动物来说,它得出的结论就会是:小球已经不存在了!它消失了。为什么得出这样的结论呢?因为它生活在“二维”世界里,对“三维”事件是无法清楚理解的。同样的道理,我们人类生活在“三维”世界里,对于比我们多几维的宇宙,也是很难理解清楚的。这也正是对于“宇宙是什么样子”这个问题无法解释清楚的原因。
1.均匀的宇宙
长期以来,人们相信地球是宇宙的中心。哥白尼把这个观点颠倒了过来,他认为太阳才是宇宙的中心。地球和其它行星都是围绕太阳转动,恒星则是镶嵌在天球的最外层上。布鲁诺进一步认为,宇宙没有中心,恒星都是遥远的太阳。
无论是托勒密的地心说还是哥白尼的日心说,都认为宇宙是有限的。教会支持宇宙有限的论点。但是,布鲁诺敢说宇宙是无限的,从而挑起了宇宙究竟是有限还是无限的长期论战。这场论战并没有因为教会烧死布鲁诺而停止下来。主张宇宙有限的人说:“宇宙怎么可能是无限的呢?”这个问题同样也不好回答。
随着天文观测技术的发展,人们看到,确实像布鲁诺所说的那样,恒星是遥远的太阳。人们还进一步认识到,银河是由无数个太阳系组成的大星系,我们的太阳系处在银河系的边缘,围绕着银河系的中心旋转,转速大约每秒250公里,围绕银心转一圈约需2.5亿年。太阳系的直径充其量1光年,而银河系的直径高达10万光年。银河系由100多亿颗恒星组成,太阳系在银河系中的地位,真像一粒沙子处在北京城中。后来又发现,我们的银河系还与其它银河系组成更大的星系团,星系团的直径约为107光年(1000万光年)。目前,望远镜观测距离已达100亿光年以上,在所见的范围内,有无数个星系团存在,这些星系团不再组成更大的团,而是均匀各向同性地分布着。也就是说,在107光年的尺度以下,物质是成团分布的。卫星绕着行星转动,行星、彗星绕着恒星转动,形成了一个个太阳系。这些太阳系分别由一个、两个、三个或更多个太阳以及它们的行星组成。有两个太阳的称为双星系,有三个以上太阳的称为聚星系。成千上亿个太阳系聚集在一起,形成银河系,组成银河系的恒星(太阳系)都围绕着共同的重心—银心转动。无数银河系组成的星团,团中的银河系也同样围绕着它们共同的重心转动。但是,星系团之间,不再有成团结构。各个星系团均匀地分布着,无规则的运动着。从我们地球上,往四面八方看,情况都差不多。粗略地说,星系团有点像容器中的气体分子,均匀分布着,做着无规则运动。这就是说,在108光年(一亿光年)的尺度以上,宇宙中的物质不再是成团的,而是均匀分布的。
由于光的传播需要时间,我们看到的距离我们一亿光年的星系,实际上是那个星系一亿光年前的样子。所以,我们用望远镜看到的,不仅是空间距离遥远的星系,而且是它们的过去。从望远镜看来,不管多远距离的星系团,都均匀各向同性的分布着。因而我们可以认为,宇观尺度上(105光年以上)物质分布的均匀状态,不是现在才有的,而是早已如此。
于是,天体物理学家提出一条规律,即所谓宇宙学原理。这条原理说,在宇观尺度以上,三维空间在任何时刻都是均匀各向同性的。现在看来,宇宙学原理是对的。所有星系都差不多,都有相似的演化历程。因此我们用望远镜不仅看空间,而且在看时间,在看我们的历史。
2.有限而无边的宇宙
爱因斯坦发表相对论以后,考虑到万有引力比电磁力弱得多,不可能在分子、原子、原子核等研究中产生重要的影响,因而他把注意力放在了天体物理上。他认为,宇宙才是广义相对论大有用武之地的领域。
爱因斯坦1915年发表广义相对论,1917年就提出了一个建立在广义相对论基础上的宇宙模型。这是一个人们完全意想不到的模型。在这个模型中,宇宙的三维空间是有限无边的,而且不随时间变化。以往人们认为,有限就是有边。爱因斯坦把有限和有边区分了开来。
一个长方形的桌面,有确定的长和宽,也有确定的面积,因而大小是有限的,同时它有明显的四条边,因此是有边的。如果有一个小甲虫在它上面爬,无论向哪个方向爬,都会很快到达桌面的边缘。所以桌面是有限有边的二维空间。如果桌面向四面八方无限伸展,成为欧氏几何中的平面,那么,这个欧式平面是无限无边的二维空间。
我们再看一个篮球的表面,如果篮球的半径为r,那么球面的面积是4∏r0,大小是有限的。但是,这个二维球面是无边的。假如一个小甲虫在它上面爬,永远也不会走到尽头。所以,篮球面是一个有限无边的二维空间。
按照宇宙学原理,在宇观尺度上,三维空间是均匀各向同性的。爱因斯坦认为,这样的空间必定是常曲率空间,也就是说空间个点的弯曲程度应该相同,即应该有相同的曲率。由于有物质存在,四维时空应该是弯曲的。三维空间也应该是弯的而不应是平的。爱因斯坦觉得,这样的宇宙应该是三维超球面。三维超球面不是通常的球体,而是二维球面的推广。通常的球体是有限有边的,体积是3∕4∏r3,它的边就是二维球面。三维超球面是有限无边的,生活在其中的三维生物(例如我们人类就是有长、宽、高的三维生物),无论朝哪个方向前进均碰不着边。假如它一直朝北走,最终会从南边回来。
宇宙学原理还认为,三维空间的均匀各向同性是在任何时刻都保持的。爱因斯坦觉得其中最简单的情况就是静态宇宙,也就是说,不随时间变化的宇宙。这样的宇宙只要在某一时刻均匀各向同性,就永远保持均匀各向同性。
爱因斯坦试图在三维空间均匀各向同性、且不随时间变化的假定下,求解广义相对论的场方程。场方程非常复杂,而且需要知道初始条件(宇宙最初的情况)和边界条件(宇宙边缘处的情况)才能求解。本来,解这样的方程是十分困难的事情,但是爱因斯坦非常聪明,他设想宇宙是有限无边的,没有边自然就不需要边界条件。他又设想宇宙是静态的,现在和过去都一样,初始条件也就不需要了。再加上对称性的限制(要求三维空间均匀各向同性),场方程就变得好解多了。但还是得不出结果。反复思考之后,爱因斯坦终于明白了求不出解的原因:广义相对论可以看作是万有引力定律的推广,只包含“吸引效应”不包含“排斥效应”。而维持一个不随时间变化的宇宙,有排斥效应和吸引效应相平衡才行。这就是说,从广义相对论场方程不可能得出“静态”宇宙。要想得出静态宇宙,必须修改场方程。于是他在方程中增加了一个“排斥项”,叫做宇宙项。这样,爱因斯坦终于计算出了一个静态的,均匀各向同性的、有限无边的宇宙模型。一时间大家非常兴奋,科学终于告诉我们,宇宙是不随时间变化的、是有限无边的。看来,关于宇宙有限还是无限的争论似乎可以画上一个句号了。
3.宇宙的“宇宙模型”之说
几年之后,一个名不见经传的前苏联数学家弗里德曼,应用不加宇宙项的场方程,得到一个膨胀的、或脉动的宇宙模型。弗里德曼宇宙在三维空间上也是均匀、各向同性的,但是,它不是静态的。这个宇宙模型随时间变化,分三种情况,三维空间的曲率是负的;第二种情况,三维空间的曲率为零,也就是说,三维空间是平直的;第三种情况,三维空间的曲率是正的。前两种情况,宇宙不断地膨胀;第三种情况,宇宙先膨胀,达到一个最大值后开始收缩,然后再膨胀,再收缩、、、、、、因此第三种宇宙是脉动的。弗里德曼宇宙最初发表在一个不太著名的杂志上。后来,西欧一些数学家物理学家得到类似的宇宙模型。爱因斯坦得知这类膨胀或脉动的宇宙模型后,十分兴奋。他认为自己的模型不好,应该放弃,弗里德曼模型才是正确的宇宙模型。
同时,爱因斯坦宣称,自己在广义相对论的场方程上加宇宙项是错误的,场方程不应该含有宇宙项,而应该是原来的老样子。但是,宇宙项就像“天方夜谭”中从瓶子里放出的魔鬼再也收不回去了。后人没有理睬爱因斯坦的意见,继续探讨宇宙项的意义。今天,广义相对论的场方程有两种,一种不含宇宙项,另一种含宇宙项,都在专家们的应用和研究中。
早在1910年前后,天文学家就发现大多数星系的光谱有红移现象,个别星系的光谱还有紫移现象。这些现象可以用多普勒效应来解释。远离我们而去的光源发出的光,我们收到时会感到其频率降低,波长变长,并出现光谱线红移的现象,即光谱线向长波方向移动的现象。反之,向着我们迎面而来的光源,光谱线会向短波方向移动,出现紫移现象。这种现象与声音的多普勒效应相似。许多人都有过这样的感受;迎面而来的火车其鸣叫声特别尖锐刺耳,远离我们而去的火车其鸣叫声则明显迟钝。这就是声音的多普勒效应,迎面而来的生源发出的声波,我们感到其频率升高,远离我们而去的生源发出的声波,我们则感到其频率降低。
如果认为星系的红移、紫移现象是多普勒效应,那么大多数星系都在远离我们,只有个别星系向我们靠近。随之进行的研究发现,那些个别向我们靠近的紫移星系,都在我们自己的本星系团中(我们银河系所在的星系团称本星系团)。本星系团中的星系,多数红移,少数紫移;而其它星系团中的星系就全是红移了。
1929年,美国天文学家哈勃总结了当时的一些观测数据,提出了一条经验规律,河外星系(即我们银河系之外的其他银河系)的红移大小正比于它们离开我们银河系中心的距离。由于多普勒效应的红移量与光源的速度成正比,所有,上述定律又表述为:河外星系的推行速度与它们离我们的距离成正比:
V=HD
式中的V是河外星系的退行速度,D是它们到我们银河系中心的距离。这个定律成为哈勃定律,比例常数H称为哈勃常数。按照哈勃定律,所有的河外星系都在远离我们。而且,离我们越远的河外星系,逃离越快。
哈勃定律反映的规律与宇宙膨胀理论正好相符。个别星系的紫移可以这样解释,本星系团内部个星系要围绕它们的共同重心移动,因此总会有少数星系在一定时间内向我们的银河系靠近。这种紫移现象与整体的宇宙膨胀无关。
哈勃定律大大支持了弗里德曼的宇宙模型。不过,如果查看一下当年哈勃得出定律时所用的数据图,人民会感到惊讶。在距离与红移量的关系图中,哈勃标出的点并不集中在一条直线附近,而是比较分散的。哈勃怎么敢断定这些点应该描绘成一条直线呢?一个可能的答案是,哈勃抓住了规律的本质,抛开了细节。另一个可能是,哈勃已经知道当时的宇宙膨胀理论,所以大胆认为自己的观测与该理论一致。以后的观测数据越来越精,数据图中的点也越来越集中在直线附近,哈勃定律终于被大量实验观测所确认。
4.宇宙到底有限还是无限
现在,我们又回到前面的话题,宇宙到底有限还是无限?有边还是无边?对此,我们从广义相对论、大爆炸宇宙模型和天文观测的角度来探讨这一问题。
满足宇宙学原理(三维空间均匀各向同性)的宇宙,肯定是无边的。但是否有限,却要分三种情况来讨论。
如果三维空间的曲率是正的,那么宇宙将是有限无边的。不过,它不同于爱因斯坦的有限无边的静态宇宙,这个宇宙是动态的,将随时间变化,不断的脉动,不可能静止。这个宇宙从空间体积无限小的奇点开始爆炸、膨胀。此奇点的物质密度无限大。温度无限高、空间曲率也无限大。在膨胀过程中宇宙的温度逐渐降低,物质密度、空间曲率和时空曲率逐渐减小。体积膨胀到一个最大值后,将转为收缩。在收缩过程中,温度重新升高】物质密度、空间曲率和时空曲率逐渐增大,最后达到新奇点许多人认为,这个宇宙在达到新奇点之后将重新开始膨胀。显然,这个宇宙的体积是有限的,这是一个脉动的、有限无边的宇宙。
如果三维空间的曲率为零,也就是说,三维空间是平直的(宇宙中有物质存在,四维时空是弯曲的),那么这个宇宙一开始就具有无限大的三维体积,这个初始的无限大三维体积是奇异的(即“无穷大”的奇点)。这个“无穷大”奇点,我开始,爆炸不是发生在初始三维空间中的某一点,而是发生在初始三维空间的每一点,即大爆炸发生在整个“无穷大”奇点上。这个“无穷大”奇点,温度无限高,密度无限大,时空曲率也无限大(三维空间曲率为零)。爆炸发生后,整个“奇点”开始膨胀,成为正常的非奇异时空,温度、密度和时空曲率都逐渐降低。这个过程将永远地进行下去。这是一种不大容易理解的图像:一个无穷大的体积在不断地膨胀。显然,这种宇宙是无限的,它是一个无限无边的宇宙。
三维空间曲率为负的情况与三维空间曲率为零的情况比较相似。宇宙一开始就有无穷大的三维体积,这个初始体积也是奇异的,即三维“无穷大”奇点。它的温度、密度无限高,三维、四维曲率都无限大。大爆炸发生在整个“奇点”上,爆炸后,无限大的三维体积将永远膨胀下去,温度、密度和曲率都将逐渐降下来。这也是一个无限的宇宙,确切地说是无限无边的宇宙。
那么,我们的宇宙到底属于上述三种情况的哪一种呢?我们宇宙的空间曲率为正,为负还是为零呢?这个问题要由观测来决定。
广义相对论的研究表明,宇宙中的物质存在一个临界密度pc,大约是每个立方米三个核子(质子或中子)。如果我们宇宙中物质的密度P大于PC,则三维空间曲率为正,宇宙是有限无边的;如果P小于PC,则三维空间曲率为负,宇宙也是有限无边的。因此,观测宇宙中物质的平均密度,可以判定我们的宇宙究竟属于哪一种,究竟有限还是无限。
此外,还有另一个判据,那就是减速因子。河外星系的红移,反映的膨胀是减速膨胀,也就是说,河外星系远离我们的速度在不断减小。从减速的快慢,也可以判定宇宙的类型。如果减速因子q大于1/2,三维空间曲率将是正的,宇宙膨胀到一定程度将收缩;如果q等于1/2,三维空间曲率为零,宇宙将永远膨胀下去;如果q小于1/2,三维空间曲率将是负的,宇宙也将永远膨胀下去。
下表列出了有关的情况:
我们有了两个判据,可以决定我们的宇宙究竟属于哪一种了。观测结果表明,p<pc,我们宇宙的空间曲率为负,是无限无边的宇宙,将永远膨胀下去!不幸的是,减速因子观测给出了相反的结果,q>1/2,这表明我们宇宙的空间曲率为正,宇宙是有限无边的,脉动的,膨胀到一定程度会收缩回来。哪一种正确呢?有些人倾向于认为减速因子的观测更可靠,推测宇宙中可能有某些暗物质被忽略了,如果找到这些暗物质,就会发现p实际上是大于pc的。另一些人则持有相反的看法。还有一些人认为,两种观测方法虽然结论相反,但得到的空间曲率都与零相差不大,可能宇宙的空间曲率就是为零。然而,要统一大家的认识,还需要进一步的实验观测和理论推敲。今天,我们仍然肯定不了宇宙究竟有限还是无限,只能肯定宇宙无边,而且现在正在膨胀!此外,还知道膨胀大约开始于100亿~200亿年以前,这就是说,我们的宇宙大约起源于100亿~200亿年以前。
5.宇宙巨壁和宇宙巨洞
20世纪70年代以前,人们普遍认为大尺度宇宙的宇宙物质分布是均匀的,星系团均匀的地散布宇宙空间。然而,近年来天文学研究的进步改变了人们的共识。人们发现,宇宙在大尺度上也是有结构的。
20世纪50年代,沃库勒首先提出包括我们银河系所属的本星系群在内本超星系团。已先后发现十几个超星系团。星系团像一些珠子,被一些孤立的星系串在一起,形成超星系团。最大的超星系团超过了10亿光年。1978年,在发现A1367超星系团的发现了一个巨洞,其中几乎没有星系。不久,有着牧夫座发现一个直径达2.5亿光年的巨洞,巨洞里有一些暗的矮星系。巨洞和超星系团的存在表明,宇宙的结构好像肥皂泡沫那样由许多巨洞组成。星系、星系团和超星系团位于“泡沫巨洞”的“壁”上,把巨洞隔离开来。1986年,美国天文学家的研究结果表明,这些星系似乎拥挤在一条杂乱相连的不规则的环形周界上,像是附着在巨大的泡沫壁上,周界的跨度约50兆秒差距。后来他们的研究又得到进一步的发展。他们指出:宇宙存在着尺度约达50兆秒差距的低密度的宇宙巨洞,及高密度的星系巨壁,在他们所研究的天区存在一个星系巨壁,巨壁长为170兆秒差距,高为60兆秒差距,宽度仅为5兆秒差距。
星系巨壁(也称宇宙长城或宇宙巨壁)和宇宙巨洞是怎么产生的呢?人们认为应从宇宙早期去找原因,在宇宙诞生后不长时期内,虽然宇宙是均匀的,但各种尺度的密度起伏仍然是存在的,有的起伏被抑制住了,有的起伏得到发现,被引力放大成现在所观测到的大尺度结构。
6.暗物质之谜
不少天文学家认为宇宙中有90%以上的物质是以暗物质的形式隐藏着的。有些什么事实和现象表示宇宙中存在暗物质呢?
早在20世纪30年代荷兰天文学家奥尔特就注意到,为了说明恒星来回穿越银道面的运动,银河系圆盘中必须有占银河系总质量的一半的暗物质存在。20世纪70年代,一些天文学家的研究证明星系的质量主要并不集中在星系核心,而是均匀的分布在整个星系中。这就暗示人们,在星系晕中一定存在着大量看不见的暗物质。这些暗物质是些什么呢?
科学家认为,暗物质中有少量是所谓的重子物质,如极暗的褐矮星,质量为木星30倍~80倍的大行星,恒星残骸,小黑洞,星系际物质等。它们与可见物质一样,虽也是由质子、中子和电子等组成的物质,但很难用一般光学望远镜观测到它们。相对而言,绝大部分暗物质是非重子物质,它们都是些具有特意性能的,质量很小的基本粒子,如中微子、轴子及探讨中的引力微子、希格斯微子、光微子等。
怎样才能探测到这些暗物质呢?科学家做了许多努力。对于重子暗物质,他们重点探测存在于星系晕中的暗天体,它们被叫做大质量致密度晕天体。1993年,由美澳等国天文学家组成的三个天文研究小组开始了寻找致密晕天体的研究工作。到1996年,他们报告说,已找到7个这样的天体。它们的质量由1/10太阳质量到1个太阳质量不等。有些天文学家认为这些天体可能是白矮星、红矮星、褐矮星、木星大小的天体、中子星以及小黑洞,也有人认为银河系中50%的暗物质可能是核燃料耗尽的死星。
关于非重子物质,现在尚未观测到这些幽灵般的粒子存在的证据。
近年来对中微子质量的测量取得了一些新结果。1994年美国物理学家怀特领导的物理学小组测量出中微子质量在0.5~5电子伏(1电子伏等于1.7827×10(~36)千克)之间。在每一立方米的空间中约有360亿个中微子。如果是这样的话,那么宇宙中全部中微子的总质量要比所有已知的星系的总和还要大。
到目前为止,宇宙中暗物质的问题仍是个未解之谜。
街头篮球打开错误,
你进其他的游戏会出现这样情况么? 如果没有的话,那就是新的天游客户端和系统不兼容的问题。解决方法:(1)不要试图修改天有客户端,因为,再怎么修改都是没用的。只要天游不维护,不更新客户端的情况下。而且,天游客户端经常性的会出现一些问题,这也是天游技术方面的不足。
(2)试图修改一下电脑方面的设置,用360卫士 或者 金山卫士,看一下自己电脑的开机启动项,有些可能和天游有冲突。
(3)清除系统垃圾,因为是内存不足~有可能是垃圾过多所导致。
(4)用卫士看一下,插件,有些正在运行的插件,也会导致这种情况。
(5)你用的什么杀毒软件,你用的什么电脑卫士,说一下。因为,比如QQ管家和街头篮球有冲突(又可能,在我的电脑上是这样)。
因为 你只给了我这个图片~ 所以,很多问题 还是不能确定。而且,就是确定了也不一定能搞定。因为,天游的客户端确实很LG 这一点,你也懂。如果 按照我上面的方法解决了,那更好。如果 没搞定,请追问,谢谢。
——丿丶黑色幽默
我是台球初学者,请问注意什么
打球,要从最基本的东西学起,尤其是姿势!!下面给你一个关于姿势的文章..好好看看吧!!会有帮助的~看完姿势还有一个关于杆法的..慢慢看!
一 握杆手势
无论是右手握杆或左手握杆、握杆的位置很重要,握的合适能轻松自如平稳击球。这是打台球开始的第一个重要因素不可轻视。
首先要找到球杆的重心,方法是用手的拇指和食指捏在一起,做成一个圆圈或一个钩,把球杆套在圈里面,然后左右推动球杆调整直至平衡为止,套在球杆上的手指位置就是这支球杆的重心。再从这个重心向杆尾移动20到30厘米,这个部位便是一般握杆的合适位置遇有特殊打法需要,还可以前后移动调整握杆位置。
握杆时,不能握得太紧,不然手和手腕肌肉紧张,手臂僵硬,不能平顺滑动出杆击球,右手握杆时,拇指和食指在虎口处轻轻夹住球杆,好像一个吊环,衩际握住球杆的是手的前部,即:拇指和前两个手指,另外两个手指虚握,小指包绕在球杆底部,主要配合控制球杆的平衡稳定,使球杆保持直线运动。
二 杆架手势
用手为球有做成的各种支架称手杆架,架杆或台架等。在台或以架等。在台球运动中往往被人忽视了它的重要作用,要保证击球的准确性,必须有自然而稳定的杆架来支承,它可以准确地引导球杆进行击球动作的导向。
1 平背式杆架手势:先把左手掌伸直,手心向下按在球台台面上,五指尽量岔开、指开紧抓台布,形成一个宽而有力的稳定杆架基部,然后掌心稍微拱起,拇指紧贴食指翘起,食指与拇指之间便出现一个凹槽,球杆便可以放在凹槽上活动自如。如需要调整高低时,可以使手指伸平手掌降低、拱起而升高适应击球需要。这种杆架高度低,适用于球径较小的落袋式台球。
2 凤眼式杆架手式:为了容易理解,方便练习,现把这种手势分解成单项动作图解说明如下:
(1)将左手平放在球台台面上,手心向下,由手腕到指尖,向内侧稍微转个小弯。
(2)小指、无名指和中指,一齐向内侧转动拱起,手掌左边压在台面上,三个手指形成支撑的手势。
(3)当左手与球杆方向接近直角时,左手拇指和和食指尖向一起捏。
(4)拇指和食指形成一个圆圈后,便可以把球杆插入圈内来支撑球杆击球。如果需要调整高低时,呆伸展或拱起中指来调整。因这种杆架高,多用于球径大的开仑台球。
3 V形杆架手势,如果遇到在主球后面有一个球造成击球障碍,为了不碰这个阻挡球必须将球杆抬高,主球和阻挡球越近,打好主球的难度就越大,如果主球紧紧近阻挡球做杆架的手应更近些,角度就更陡些,以便打中主球,相对的可击部分就很小,打不好就要滑杆。
把四个手指头竖起来,支在阻挡球后面,尽量把大拇指翘起,把球杆架在拇指和食指间形成的V形槽里,击球时,球杆顺着槽滑动,如果击球需要时,球杆把还可以抬高。这是不太舒服的一种杆架,但又非常重要,不会是不行的,应该经常练习支撑的手指,直到能稳当面而有力的支起球杆为止。
4 台边杆架手势
由于球的位置变化多端,以及打法不同,仅靠几种常用的标准杆架手势,不可能是万能的,所以杆架手势也不可能千篇一律,而是多种多样的,有五花八门的名称。
三 身体姿势
能否瞄得准打必进,击球姿势起着重要的作用,有的人,初学时并不注意,只是随随便便地站在球台前挥杆就打,这是种极为有害的开始。常见一此球手,打了多年台球,球技并不出色平平常常,深感苦恼,当发现击球姿势不正确,有心纠正力图提高球技水平,但已形成习惯很难改正。因此必须强调,初学开始,必须懂得并严格要求自己,一定下决心使自己的击球姿势是正确的合格的。
1 身体站立位置,首先要确定身体站立的合适位置,这要根据球和球杆的方向距离来决定。
先用右手按照要求握好球杆,而向球台上要打的主球方向站好,平握球杆,杆头指向主球,与主球相距6—10厘米左右。握杆的右手拇指要和裤子侧缝对齐。球杆的指向必须与主球行进方向成一条直线。
2 脚的位置:身体站立的位置确定后,握杆的右手原位不动,在两脚立正站立的姿势下,左脚向左稍前侧方迈出一小步,宽度与肩宽略等(可根据身材高低调整),右脚尖向右外侧自然转动45度左右。两脚平放在地面上,不要虚提或离开地面,右脚绷,构成一个稳固、坚定的击球姿势。
3 上身姿势:
(1)落袋式台球。如司诺克和美式花球球小台面大,准确度要求高,所以一般多采取腑身视瞄准击球,用平背式手杆架,上身向前平伸,与台面很近,头略抬起,下颌与球杆相贴,两眼向前平视,顺着球杆方向瞄视。
(2)无袋撞击式台球,球径大,主球只要能碰撞上两个目标球便可行分,多采用重叠式(厚薄度)瞄准法,准确度要求不高。手杆架采用比较高一点的风眼式杆架。瞄准时,双眼在斜上方扫视球台上的三个目标球,因此,只要上身稍微向前倾斜一点,便可以纵鉴全局。
4 面部位置:正确击球姿势的形成,不能忽视面部位置的关键性作用。面部不正就瞄不准,也就不可能击球入袋。要想做到打得准,弹不虚发,使球按照预想的路线行进,就必须特别注意,使面部的垂直中心线与球杆的中轴线,保持在同一个垂直中心平面上。
怎样才能把面部摆正呢?具体做法是在瞄准时,将下颌对准球杆中轴线上,并与球杆相贴,两眼保持水平,向前平视。这样面部中心,包括鼻子,嘴和下颌,便都能与球杆和右后臂,进入同一个垂直平面里。
下面是关于杆法的运用等~~
学打台球首先必须了解用球杆怎样打,打主球各个不同部位,球将会产生什么样的旋转变化,当主球主动撞击被动的目标球后,两个球将要产生什么样的旋转变化和行进去向等。为了学好台球,一定要弄明白,球的运动状态与球性,不然,对着球胡乱击打,违反击球的科学规律,是很难学好打台球的,也就达不到提高技术水平的目的了。
用球杆击打主球上的点叫击点也称撞点,面对主球平视,是个圆形面,这个圆形面上到处都是可以打的击点。但是,为了方便分析研究和学习,在圆形面上以圆心为基点设中心点,并根据点位与旋转的相应关系,在中心点周围选定8个点,一共9个点。
球和球杆上的撞头都是圆球面形的,如果球杆上的撞头在圆球的边缘部位时,由于角度过斜,便要发生打滑现象(称滑杆)。说明主球的球面上,不是都是可以用球杆击打的点位,而是有一定范围限制的。可以撞击而不至于打滑的范围称安全击球区。即把主球视平面直径划分10等份,取其中6等份在球中心画个圆,称其为十分之六的同心圆,在这个范围内击球,就可以不会发生滑杆现象。如果击球技术达到高超水平,还可以超过安全区击球,也很少发生滑杆现象。仍可以向球体边缘延伸,把安全击球区再扩展到主球直径的十分之七或十分之八范围。
当球技达到相当高超的水平后,击球范围也自然随之延伸扩大,密密麻麻地布满了球面,几乎处处都是可击之点,使球的运动千变万化,变幻莫测。以9个基本点扩展为17个、33个直到49个。
1、主球的旋转运动:
主球上虽然有九个基本击点,初学者练球时,要先熟悉中心、中上和中下这三个主要常用的击点。这三个击点若能打得好,无论打无袋式或落袋式台球,基本上都能解决击球得分的问题。
1)撞击主球中上点:球开始延着球杆方向,直线向前奔走得很快、很远。因为球受正旋力矩的推动,滚动旋转的磨擦又比滑行磨擦少得多,动能损失很小。
2)撞击主球中心击点:开始没有旋转,向前滑动瞬间后,因受台呢的磨擦阻力作用,渐渐产生了正旋力矩,使球与台面接触点速度减慢,球的顶点速度不变,于是球便向前旋转起来。球在哪里开始旋转,能滚到多远的距离,依击球力量的大小而不同。
3)撞击主球中下点:球一开始就具有逆旋的力矩,球则一边行进一边倒旋,由于台呢的磨擦力作用,倒旋减缓直到为零,球经过一段滑行,便过渡到正旋前进。直到减慢停止。
4)撞击主球左中或右中击点:这是一种侧旋转球的打法(亦称偏杆击球)。技术难度较大,但又是必须学会练好的侧旋球技术,并懂得在击球中会出现需要侧旋球的重要作用。当遇到需要从根本上改变主球或目标球前进路线的时候,便会体察到运用侧旋球的特殊作用。
侧旋球是台球的一种特殊的转动。这是一种畸形旋转,在撞击目标球的前后都能改变球的路线。上面已经讲过,打主球中上点所产生的上旋,可以形成跟进球。而打中下点产生下旋,可以形成缩球。侧旋是这些技术的延伸发展。
由于平常打球,大都用的是主球中线范围上的九个击点,而形成面对主球正面瞄准击球习惯,一旦使用偏杆,往往是球杆对主球斜着打。打侧旋球要求球杆必须与台面平行,如果养成抬高后手握杆习惯,将会影响击球效果。还有击球速度和力度的控制要求都比较严格。
撞击主球左中或右中击点后,主球则以水平方向自转(左转或右转)与向前旋转的混合转动方式前进。撞击主球左中点时,从球的上方看,球是顺时针方向自转,称左旋;撞击主球右中点时,球是逆时针方向自转,称右旋。
侧旋球的主球前进线路不是直线,比如打左旋球时,主球受偏左的分力推动,开始先一点点地向右运动,然后又向左边转动。打右旋时,主球开始一点点地向左运动,然后又向右运动。由此可知,侧旋球使主球离开直线运动轨迹,因此主球与目标球之间的距离越长,瞄准的判断越是需要准确。
2、偏球相撞的旋转运动:
偏球:所谓偏球,就是不正面撞击目标球,主球只撞击目标球的偏侧部分。打偏球的目的,就是改变主球和目标球的球路,达到得分的要求。无论开仑还是落袋式台球,都常用到偏球。我们常听到的所谓厚球,薄球,又或二分之一、四分之一、四分之三球,指的就是主球撞击目标球时,偏侧的程度。厚、薄或几分之几,是主球撞击目标球的有效撞击截面占球的截面的比例,厚就是撞击截面大,薄就是撞击截面小。但习惯说的数字比例,并不是面积之比,而是撞击截面在直径上所占的线度与目标球直径之比。
厚球与薄球是在实际比赛中的一种击球技术和战术,平时练习时,必须熟悉各种厚薄球在击球中以及撞击后,主球和目标球的运动状况。偏球的厚薄,大体可分为六个类型:正面、二分之一、三分之一、三分之二、四分之一、四分之三。现分别介绍于下:
正面:就是主球球心速度方向正对目标球球心,撞击截面等于目标球的视圆面。从主球前进方向看去。主球和目标球完全重合。
二分之一:主球球心速度方向偏离目标球球心,刚好与目标球侧面外边缘相切,或偏左或偏右,撞击截面线度占球截面直径之半。
三分之一:主球撞击目标球的撞击截面线度占球截面直径的三分之一,或左或右。
四分之一:主球撞击截面线度占球截面直径的四分之一,或左或右。四分之一球已经是相当薄的球。
四分之三:主球撞击截面线度,占球截面直径的四分之三,或左或右。这是相当厚的球,仅次于正面撞击。
无论打什么厚薄的偏球,瞄准的点都应该是目标球横直径延长线与主球纵向(运动方向)延长线的交点。若用这种厚薄度进行瞄准,要打各种偏球时,一定得熟悉瞄准点所在位置和瞄准方法。
3.厚度计算法与瞄准法
因厚度不同而使母球分离的角度母球击出后在碰触到目标球的瞬间,母球与目标球重叠的比率称为“厚度”。它对于花式台球的球路(球的前进方向)来说最为重要。当你瞄准了目标球想将它击落球袋时,如果厚度产生了偏差,目标球就无法落进你所瞄准的球袋中,并且会越偏越远。在实际的比赛中,母球、目标球与球袋很难得刚好排成一条直线,多半是三者排在不规则的角度上,因此就不容易将目标球击落球袋,而且每次击球时这三者的角度与距离都不一样,所以需要一些技巧。而厚度就是在控制球路时的重要因素。
偏球的偏转:主球正面撞击目标球时,如果主球没有旋转运动,则主球的动量全部传递给目标球,主球停住,目标球沿主球原来方向向前奔去,只是主球和目标球互相换了个位置。即前面已经讲过“定位球”事实上由于磨擦力及动量吸收,目标球前进速度要减慢一些。
当主球偏侧撞击目标球时,主球和目标球的运动方向,都偏离了主球原来的运动方向,一偏左,一偏右。在动量不被吸收的前提下(绝对弹性碰撞),且假定主球不旋转,碰撞后的主球和目标球运动方向的夹角,则为九十度,不管偏球厚薄为多少。掌握了这一点,再记住不同旋转状态下的偏转方向影响,就能比较有把握改变球路。
偏球越厚,则目标球运动方向越接近主球运动方向,目标球运动速度越高,主球则越接近横向滚出,速度越低。偏球越薄,则主球运动方向和速度越改变得小,目标球越接近横向滚出,速度越低。
主球和目标球的运动的瞬间位置,符合以原主球运动方向为对角线的矩形定则。变即瞬间的主球与目标球的轨迹,构成了矩形的两个边,这个矩形对角,就是原主球的运动方向。依据这个定则,便可估计主球与目标球碰撞后到达的位置
好了,关于篮球的滚动是什么现象呢图片和篮球的滚动属于什么运动的话题就聊到这里,下次再见!
今天的文章就讲到这里了,希望对捷报手机版比分唯彩看球推荐最新捷报比分手机版老版app下载最新版官方正版比分捷报手机网球破解版最新版捷报比分7.1版本怎么样的分析对大家有所帮助,同时期待大家交流捷报手机版比分唯彩看球推荐最新捷报比分手机版老版app下载最新版官方正版比分捷报手机网球破解版最新版捷报比分7.1版本怎么样的看法。 2025-04-26 11:37:07